Minggu, 31 Oktober 2010

Technology during World War II

My first post on this blog about "Technology during World War II"

Technology during World War II played a crucial role in determining the outcome of the greatest war of all. Much of it had begun development during the interwar years of the 1920s and 1930s, some was developed in response to lessons learned during the war, and yet more was only beginning to be developed as the war ended. The massive research and development demands of the war had a great impact on the scientific community. Given the scope of the war and the rapid technological escalation which happened during the war, a vast array of technology was employed, as different nations and different units found themselves equipped with different levels of technology. Military technology developments spanned across all areas of industry. After the war ended, these developments led to new sciences like cybernetics

I will start explaining about the weapons used in World War II :

Aircraft

In the Western European Theatre of World War II, air power became crucial throughout the war, both in tactical and strategic operations (respectively, battlefield and long-range). Superior German aircraft, aided by ongoing introduction of design and technology innovations, allowed the German armies to overrun Western Europe with great speed in 1940, largely assisted by lack of Allied aircraft, which in any case lagged in design and technical development during the slump in research investment after the Great Depression. Since the end of World War I, the French Air Force had been badly neglected, as military leaders preferred to spend money on ground armies and static fortifications to fight another World War I-style war. As a result, by 1940, the French Air Force had only 1562 planes and was together with 1070 RAF planes facing 5,638 Luftwaffe fighters and fighter-bombers. Most French airfields were located in north-east France, and were quickly overrun in the early stages of the campaign. The Royal Air Force of the United Kingdom possessed some very advanced fighter planes, such as Spitfires and Hurricanes, but these were not useful for attacking ground troops on a battlefield, and the small number of planes dispatched to France with the British Expeditionary Force were destroyed fairly quickly. Subsequently, the Luftwaffe was able to achieve air superiority over France in 1940, giving the German military an immense advantage in terms of reconnaissance and intelligence.

German aircraft rapidly achieved air superiority over France in early 1940, allowing the Luftwaffe to begin a campaign of strategic bombing against British cities. With France out of the war, German bomber planes based near the English Channel were able to launch raids on London and other cities during the Blitz, with varying degrees of success.

After World War I, the concept of massed aerial bombing—"The bomber will always get through"—had become very popular with politicians and military leaders seeking an alternative to the carnage of trench warfare, and as a result, the air forces of Britain, France, and Germany had developed fleets of bomber planes to enable this (France's bomber wing was severely neglected, whilst Germany's bombers were developed in secret as they were explicitly forbidden by the Treaty of Versailles).

The bombing of Shanghai by the Imperial Japanese Navy on January 28, 1932 and August 1937 and the bombings during the Spanish Civil War (1936–1939), had demonstrated the power of strategic bombing, and so air forces in Europe and the United States came to view bomber aircraft as extremely powerful weapons which, in theory, could bomb an enemy nation into submission on their own. As a result, the fear of bombers triggered major developments in aircraft technology.

Nazi Germany had put only one large, long-range strategic bomber (the Heinkel He 177 Greif, with many delays and problems) into production, while the America Bomber concept resulted only in prototypes. The Spanish Civil War had proved that tactical dive-bombing using Stukas was a very efficient way of destroying enemy troops concentrations, and so resources and money had been devoted to the development of smaller bomber craft. As a result, the Luftwaffe was forced to attack London in 1940 with heavily overloaded Heinkel and Dornier medium bombers, and even with the unsuitable Junkers Ju 87. These bombers were painfully slow—German engineers had been unable to develop sufficiently large piston aircraft engines (those that were produced tended to explode through extreme overheating), and so the bombers used for the Battle of Britain were woefully undersized. As German bombers had not been designed for long-range strategic missions, they lacked sufficient defenses. The Messerschmitt Bf 109 fighter escorts had not been equipped to carry enough fuel to guard the bombers on both the outbound and return journeys, and the longer range Bf 110s could be out-manoeuvred by the short range British fighters. (A bizarre feature of the war was how long it took to conceive of the Drop tank.) The air defense was well organized and equipped with effective radar that survived the bombing. As a result, German bombers were shot down in large numbers, and were unable to inflict enough damage on cities and military-industrial targets to force Britain out of the war in 1940 or to prepare for the planned invasion.

British long-range bomber planes such as the Short Stirling had been designed before 1939 for strategic flights and given a large armament, but their technology still suffered from numerous flaws. The smaller and shorter ranged Bristol Blenheim, the RAF's most-used bomber, was defended by only one hydraulically operated machine-gun turret, and whilst this appeared sufficient, it was soon revealed that the turret was a pathetic defence against squadrons of German fighter planes. American bomber planes such as the B-17 Flying Fortress had been built before the war as the only adequate long-range bombers in the world, designed to patrol the long American coastlines. Defended by as many as six machine-gun turrets providing 360° cover, the B-17s were still vulnerable without fighter protection even when used in large formations.

Despite the abilities of Allied bombers, though, Germany was not quickly crippled by Allied air raids. At the start of the war the vast majority of bombs fell miles from their targets, as poor navigation technology ensured that Allied airmen frequently could not find their targets at night. The bombs used by the Allies were very high-tech devices, and mass production meant that the precision bombs were often made sloppily and so failed to explode. German industrial production actually rose continuously from 1940 to 1945, despite the best efforts of the Allied air forces to cripple industry.

Significantly, the bomber offensive kept the revolutionary Type XXI U-Boat from entering service during the war. Moreover, Allied air raids had a serious propaganda impact on the German government, all prompting Germany to begin serious development on air defence technology—in the form of fighter planes.

The jet aircraft age began during the war with the development of the Heinkel He 178, the first true turbojet. Late in the war the Germans brought in the first operational Jet fighter, the Messerschmitt Me 262. However, despite their technological edge, German jets were overwhelmed by Allied air superiority, frequently being destroyed on or near the airstrip. Other jet aircraft, such as the British Gloster Meteor, which flew missions but never saw combat, did not significantly distinguish themselves from top-line piston-driven aircraft.

Aircraft saw rapid and broad development during the war to meet the demands of aerial combat and address lessons learned from combat experience. From the open cockpit airplane to the sleek jet fighter, many different types were employed, often designed for very specific missions.

During the war the Germans produced various Glide bomb weapons, which were the first smart bombs; the V-1 flying bomb, which was the first cruise missile weapon; and the V-2 rocket, the first ballistic missile weapon. The last of these was the first step into the space age as its trajectory took it through the stratosphere, higher and faster than any aircraft. This later led to the development of the Intercontinental ballistic missile (ICBM). Wernher Von Braun led the V-2 development team and later emigrated to the United States where he contributed to the development of the Saturn V rocket, which took men to the moon in 1969.


Vehicles



The Treaty of Versailles had imposed severe restrictions upon Germany constructing vehicles for military purposes, and so throughout the 1920s and 1930s, German arms manufacturers and the Wehrmacht had begun secretly developing tanks. As these vehicles were produced in secret, their technical specifications and battlefield potentials were largely unknown to the European Allies until the war actually began. When German troops invaded the Benelux nations and France in May 1940, German weapons technology proved to be immeasurably superior to that of the Allies.

The French Army suffered from serious technical deficiencies with its tanks. In 1918, the Renault FT-17 tanks of France had been the most advanced in the world, although small, capable of far outperforming their slow and clumsy British, German, or American counterparts. However, this superiority resulted in tank development stagnating after World War I. By 1939, French tanks were virtually unchanged from 1918. French and British Generals believed that a future war with Germany would be fought under very similar conditions as those of 1914–1918. Both invested in thickly-armoured, heavily-armed vehicles designed to cross shell damaged ground and trenches under fire. At the same time the British also developed faster but lightly armoured Cruiser tanks to range behind the enemy lines.

In contrast, the Wehrmacht invested in fast, light tanks designed to overtake infantry. These vehicles would vastly outperform British and French tanks in mechanized battles. German tanks followed the design of France's 1918 Renault versions—a moderately-armoured hull with a rotating turret on top mounting a cannon. This gave every German tank the potential to engage other armoured vehicles. In contrast, around 35% of French tanks were simply equipped with machine guns (again designed for trench warfare), meaning that when French and German met in battle, a third of the French assault vehicles would not be able to engage enemy tanks, their machine-gun fire only ricocheting off German armour plates. Only a handful of French tanks had radios, and these often broke as the tank lurched over uneven ground. German tanks were, on the contrary, all equipped with radios, allowing them to communicate with one another throughout battles, whilst French tank commanders could rarely contact other vehicles.

The Matilda Mk I tanks of the British Army were also designed for infantry support and were protected by thick armour. This was ideal for trench warfare, but made the tanks painfully slow in open battles. Their light cannons and machine-guns were usually unable to inflict serious damage on German vehicles. The exposed caterpillar tracks were easily broken by gunfire, and the Matilda tanks had a tendency to incinerate their crews if hit, as the petrol tanks were located on the top of the hull. By contrast the Infantry tank Matilda II fielded in lesser numbers was largely invulnerable to German gunfire and its gun was able to punch through the German tanks. However French and British tanks were at a disadvantage compared to the air supported German armoured assaults, and a lack of armoured support contributed significantly to the rapid Allied collapse in 1940.

World War II marked the first full-scale war where mechanization played a significant role. Most nations did not begin the war equipped for this. Even the vaunted German Panzer forces relied heavily on non-motorised support and flank units in large operations. While Germany recognized and demonstrated the value of concentrated use of mechanized forces, they never had these units in enough quantity to supplant traditional units. However, the British also saw the value in mechanization. For them it was a way to enhance an otherwise limited manpower reserve. America as well sought to create a mechanized army. For the United States, it was not so much a matter of limited troops, but instead a strong industrial base that could afford such equipment on a great scale.

The most visible vehicles of the war were the tanks, forming the armored spearhead of mechanized warfare. Their impressive firepower and armor made them the premier fighting machine of ground warfare. However, even more important to a fighting mechanized army were the large number of trucks and lighter vehicles that kept the army moving

Ships


Naval warfare changed dramatically during World War II, with the ascent of the aircraft carrier to the premier vessel of the fleet, and the impact of increasingly capable submarines on the course of the war. The development of new ships during the war was somewhat limited due to the protracted time period needed for production, but important developments were often retrofitted to older vessels. Advanced German submarine types came into service too late and after nearly all the experienced crews had been lost.





The German U-boats were used primarily for stopping/destroying the resources from the United States and Canada coming across the Atlantic. Submarines were critical in the Pacific Ocean as well as in the Atlantic Ocean. Japanese defenses against Allied submarines were ineffective. Much of the merchant fleet of the Empire of Japan, needed to supply its scattered forces and bring supplies such as petroleum and food back to the Japanese Archipelago, was sunk. This kept them from training adequate replacements for their lost aircrews and even forced the navy to be based near its oil supply. Among the warships sunk by submarines was the war's largest aircraft carrier, the Shinano.

The most important shipboard advances were in the field of anti-submarine warfare. Driven by the desperate necessity of keeping Britain supplied, technologies for the detection and destruction of submarines was advanced at high priority. The use of ASDIC (SONAR) became widespread and so did the installation of shipboard and airborne radar.

Source : Wikipedia

1 komentar:

  1. nice article, very informative.

    Regards.
    DO FOLLOW BLOG:
    kevin-yonathan.blogspot.com
    All about my minds, experience and life

    BalasHapus

Attention !
Can Copy and paste, but if you do not mind please list the source with a linkback to this blog

Subscribe via email

Enter your email address:

Delivered by FeedBurner